Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution
نویسندگان
چکیده
A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical anodization. Subsequently, Ag QDs, with tunable size (1.3-21.0 nm), could be uniformly deposited on the H-TiO2 NTAs by current pulsing approach. The unique structure of the as-obtained photoelectrodes greatly improved the photoelectric conversion efficiency. The as-obtained Ag/H-TiO2-NTAs exhibited strong visible-light absorption capability, high photocurrent density, and enhanced photoelectrocatalytic (PEC) activity toward photoelectrocatalytic hydrogen evolution under visible-light irradiation (λ>420 nm). The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs.
منابع مشابه
Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation.
Ultra-fine CdS quantum dots modified TiO(2) nanotube arrays (TiO(2)-NTs) with enhanced visible-light activity are fabricated via a cathodic electro-deposition combined with ion-exchange route (CEDIE). The as-formed CdS quantum dots were highly dispersed both outside and inside the TiO(2)-NTs. The proposed CEDIE strategy results in the strong combination and heterojunctions between CdS and TiO(2...
متن کاملA visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots
TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning e...
متن کاملHigh-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays.
TiO(2) nanotube arrays (TNTAs) sensitized by palladium quantum dots (Pd QDs) exhibit highly efficient photoelectrocatalytic hydrogen generation. Vertically oriented TNTAs were prepared by a three-step electrochemical anodization. Subsequently, Pd QDs with uniform size and narrow size distribution were formed on TiO(2) nanotubes by a modified hydrothermal reaction (i.e., yielding nanocomposites ...
متن کاملTowards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2
We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocur...
متن کاملCapability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity
Highly ordered TiO2 nanotube arrays (TiO2-NTAs), with a uniform tube size on titanium substrate, were obtained by means of reoxidation and annealing. A composite structure, CdSe quantum dots@TiO2 nanotube arrays (CdSe QDs@TiO2-NTAs), was fabricated by assembling CdSe quantum dots into TiO2-NTAs via cyclic voltammetry electrochemical deposition. The X-ray diffractometer (XRD), field-emission sca...
متن کامل